91 research outputs found

    Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis

    Get PDF
    Perception of the plant steroid hormone brassinolide (BL) by the membrane-associated receptor kinase BRI1 triggers the dephosphorylation and accumulation in the nucleus of the transcriptional modulators BES1 and BZR1. We identified bsu1-1D as a dominant suppressor of bri1 in A abidopsis. BSU1 encodes a nuclear-localized serine-threonine protein phosphatase with an N-terminal Kelch-repeat domain, and is preferentially expressed in elongating cells. BSU1 is able to modulate the phosphorylation state of BES1, counter acting the action of the glycogen synthase kinase-3 BIN2, and leading to inc eased steady-state levels of dephosphorylated BES1. BSU1 belongs to a small gene family; loss-of-function analyses unravel the extent of functional overlap among members of the family and confirm the role of these phosphatases in the control of cell elongation by BL. Our data indicate that BES1 is subject to antagonistic phosphorylation and dephosphorylation reactions in the nucleus, which fine-tune the amplitude of the response to BL.Fil: Mora Garcia, Santiago. Salk Institute. Plant Biology Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Howard Hughes Medical Institute; Estados UnidosFil: Vert, Gregory. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Yin, Yanhai. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Caño Delgado, Ana. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Cheong, Hyeonsook. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Chory, Joanne. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados Unido

    The physiology of plant responses to drought

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de Catalunya Fundación Tatiana Pérez de Guzmán el BuenoDrought alone causes more annual loss in crop yield than all pathogens combined. To adapt to moisture gradients in soil, plants alter their physiology, modify root growth and architecture, and close stomata on their aboveground segments. These tissue-specific responses modify the flux of cellular signals, resulting in early flowering or stunted growth and, often, reduced yield. Physiological and molecular analyses of the model plant Arabidopsis thaliana have identified phytohormone signaling as key for regulating the response to drought or water insufficiency. Here we discuss how engineering hormone signaling in specific cells and cellular domains can facilitate improved plant responses to drought. We explore current knowledge and future questions central to the quest to produce high-yield, drought-resistant crop

    Analysis of metabolic dynamics during drought stress in Arabidopsis plants

    Get PDF
    Altres ajuts: we acknowledge support from the CERCA Programme/Generalitat de CatalunyaDrought is a major cause of agricultural losses worldwide. Climate change will intensify drought episodes threatening agricultural sustainability. Gaining insights into drought response mechanisms is vital for crop adaptation to climate emergency. To date, only few studies report comprehensive analyses of plant metabolic adaptation to drought. Here, we present a multifactorial metabolomic study of early-mid drought stages in the model plant Arabidopsis thaliana. We sampled root and shoot tissues of plants subjected to water withholding over a six-day time course, including brassinosteroids receptor mutants previously reported to show drought tolerance phenotypes. Furthermore, we sequenced the root transcriptome at basal and after 5 days drought, allowing direct correlation between metabolic and transcriptomic changes and the multi-omics integration. Significant abiotic stress signatures were already activated at basal conditions in a vascular-specific receptor overexpression (BRL3ox). These were also rapidly mobilized under drought, revealing a systemic adaptation strategy driven from inner tissues of the plant. Overall, this dataset provides a significant asset to study drought metabolic adaptation and allows its analysis from multiple perspective

    BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis

    Get PDF
    Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.Fil: Caño Delgado, Ana. Salk Institute. Plant Biology Laboratory; Estados Unidos. Howard Hughes Medical Institute; Estados UnidosFil: Yin, Yanhai. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Yu, Cong. University of Michigan; Estados UnidosFil: Vafeados, Dionne. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Mora Garcia, Santiago. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cheng, Jin Chen. University of Michigan; Estados UnidosFil: Nam, Kyoung Hee. University of Michigan; Estados UnidosFil: Li, Jianming. University of Michigan; Estados UnidosFil: Chory, Joanne. Salk Institute. Plant Biology Laboratory; Estados Unidos. Howard Hughes Medical Institute; Estados Unido

    Extragenic Suppressors of the Arabidopsis gai

    Full text link

    Drought resistance by engineering plant tissue-specific responses

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaDrought is the primary cause of agricultural loss globally, and represents a major threat to food security. Currently, plant biotechnology stands as one of the most promising fields when it comes to developing crops that are able to produce high yields in water-limited conditions. From studies of Arabidopsis thaliana whole plants, the main response mechanisms to drought stress have been uncovered, and multiple drought resistance genes have already been engineered into crops. So far, most plants with enhanced drought resistance have displayed reduced crop yield, meaning that there is still a need to search for novel approaches that can uncouple drought resistance from plant growth. Our laboratory has recently shown that the receptors of brassinosteroid (BR) hormones use tissue-specific pathways to mediate different developmental responses during root growth. In Arabidopsis, we found that increasing BR receptors in the vascular plant tissues confers resistance to drought without penalizing growth, opening up an exceptional opportunity to investigate the mechanisms that confer drought resistance with cellular specificity in plants. In this review, we provide an overview of the most promising phenotypical drought traits that could be improved biotechnologically to obtain drought-tolerant cereals. In addition, we discuss how current genome editing technologies could help to identify and manipulate novel genes that might grant resistance to drought stress. In the upcoming years, we expect that sustainable solutions for enhancing crop production in water-limited environments will be identified through joint efforts

    Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots

    Get PDF
    Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.Fil: González García, Mary Paz. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Vilarrasa Blasi, Josep. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Zhiponova, Miroslava. Ghent University. Department of Plant Biotechnology and Genetics; Bélgica. Vlaams Instituut voor Biotechnologie; BélgicaFil: Divol, Fanchon. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Mora Garcia, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Centre for Research in Agricultural Genomics. Molecular Genetics Department; EspañaFil: Russinova, Eugenia. Ghent University. Department of Plant Biotechnology and Genetics; Bélgica. Vlaams Instituut voor Biotechnologie; BélgicaFil: Caño Delgado, Ana I. Centre for Research in Agricultural Genomics. Molecular Genetics Department; Españ

    Paracrine brassinosteroid signaling at the stem cell niche controls cellular regeneration

    Get PDF
    Stem cell regeneration is crucial for both cell turnover and tissue healing in multicellular organisms. In Arabidopsis roots, a reduced group of cells known as the quiescent center (QC) act as a cell reservoir for surrounding stem cells during both normal growth and in response to external damage. Although cells of the QC have a very low mitotic activity, plant hormones such as brassinosteroids (BRs) can promote QC divisions. Here, we used a tissue-specific strategy to investigate the spatial signaling requirements of BR-mediated QC divisions. We generated stem cell niche-specific receptor knockout lines by placing an artificial microRNA against BRI1 (BRASSINOSTEROID INSENSITIVE 1) under the control of the QC-specific promoter WOX5. Additionally, QC-specific knock-in lines for BRI1 and its downstream transcription factor BES1 (BRI1-EMS-SUPPRESOR1) were also created using the WOX5 promoter. By analyzing the roots of these lines, we show that BES1-mediated signaling cell-autonomously promotes QC divisions, that BRI1 is essential for sensing nearby inputs and triggering QC divisions and that DNA damage promotes BR-dependent paracrine signaling in the stem cell niche as a prerequisite to stem cell replenishment

    MELOGEN: an EST database for melon functional genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melon (<it>Cucumis melo </it>L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs) from eight normalized cDNA libraries from different tissues in different physiological conditions.</p> <p>Results</p> <p>We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs) and 10,614 unclustered sequences (singletons). Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs) and 356 single nucleotide polymorphisms (SNPs) were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs) in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes.</p> <p>Conclusion</p> <p>The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN) which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of sequences constitutes also the basis for an oligo-based microarray for melon that is being used in experiments to further analyse the melon transcriptome.</p
    corecore